
Winter Contest 2023

Solutions presentation

January 28, 2023



Winter Contest 2023 Jury

• Florian Kothmeier
Friedrich–Alexander University
Erlangen–Nürnberg

• Felicia Lucke
CPUlm

• Jannik Olbrich
CPUlm

• Christopher Weyand
Karlsruhe Institute of Technology

• Marcel Wienöbst
University of Lübeck

• Wendy Yi
Karlsruhe Institute of Technology

• Michael Zündorf
Karlsruhe Institute of Technology



Big thanks to our test solvers

• Niko Fink
University of Passau

• Michael Ruderer
CPUlm

• Erik Sünderhauf
Technical University of Munich



I: Infinity Issues
Problem Author: Michael Zündorf

0 50 100 150 200 250 300
0

5

10

15

20

25

30

correct
wrong-answer
timelimit
run-error
pending



I: Infinity Issues
Problem Author: Michael Zündorf

Problem
Given a text, split it into lines of length exactly w

Solution

• Read the complete line containing the text
• Print it character for character
• If the position i = 0 mod w print in addition a newline

except if i = 0

Tipps for Common Errors
If you combine std::cin and std::getline make sure that you read the ’\n’ character ending the
previous line



I: Infinity Issues
Problem Author: Michael Zündorf

Problem
Given a text, split it into lines of length exactly w

Solution

• Read the complete line containing the text
• Print it character for character
• If the position i = 0 mod w print in addition a newline

except if i = 0

Tipps for Common Errors
If you combine std::cin and std::getline make sure that you read the ’\n’ character ending the
previous line



I: Infinity Issues
Problem Author: Michael Zündorf

Problem
Given a text, split it into lines of length exactly w

Solution

• Read the complete line containing the text
• Print it character for character
• If the position i = 0 mod w print in addition a newline

except if i = 0

Tipps for Common Errors
If you combine std::cin and std::getline make sure that you read the ’\n’ character ending the
previous line



C: Christmas Calories
Problem Author: Jannik Olbrich

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
pending



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))

• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b
ℓℓ r

r

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))

• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b
ℓℓ r

r

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))
• Consider a point b on the circle with distance ℓ to a

• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b
ℓ

ℓ r

r

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))
• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b

ℓ

ℓ r

r

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))
• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)

• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b

ℓ

ℓ r

r
α

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))
• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b

ℓ

ℓ r

r
α

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))
• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b

ℓ

ℓ r

r
α

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))
• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b

ℓ

ℓ r

r
α

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



C: Christmas Calories
Problem Author: Jannik Olbrich

Problem
Given a circle of radius r . What is the probability that a point on the circle drawn uniformly at
random has distance at least ℓ from some other point on the circle?

Solution
• Let the circle have center (0, 0). Fix one point a on the circle (e.g. (−r , 0))
• Consider a point b on the circle with distance ℓ to a
• a, b and (0, 0) form a triangle with side lengths r , r and ℓ

• Compute the angle α: ℓ2 = r 2 + r 2 − 2 · r · r · cos α (law of cosines)
• Answer is 1 − α/π

Alternative solution: Binary search over α or e.g. the x -coordinate of b

a

b

ℓ

ℓ r

r
α

Possible pitfalls

• float is too imprecise
• Edge case ℓ > 2r may result in NaN



J: Jinxed Jewelry
Problem Author: Michael Zündorf

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
pending



J: Jinxed Jewelry
Problem Author: Michael Zündorf

Problem
Given chains of various lengths, how many chain links do you need to open, interlock with other
chain links and close again, to form a cyclic chain

Solution

• You need to open a chain links such that you end up with b ≤ a chains remaining
• If b > a You need to open more chain links
• If you open chain links from the shortest chain you have the chance to completely use up a chain
• This not only increases a but also decreases b
⇒ It is optimal to open chain links from the shortest chains first



J: Jinxed Jewelry
Problem Author: Michael Zündorf

Problem
Given chains of various lengths, how many chain links do you need to open, interlock with other
chain links and close again, to form a cyclic chain

Solution

• You need to open a chain links such that you end up with b ≤ a chains remaining

• If b > a You need to open more chain links
• If you open chain links from the shortest chain you have the chance to completely use up a chain
• This not only increases a but also decreases b
⇒ It is optimal to open chain links from the shortest chains first



J: Jinxed Jewelry
Problem Author: Michael Zündorf

Problem
Given chains of various lengths, how many chain links do you need to open, interlock with other
chain links and close again, to form a cyclic chain

Solution

• You need to open a chain links such that you end up with b ≤ a chains remaining
• If b > a You need to open more chain links

• If you open chain links from the shortest chain you have the chance to completely use up a chain
• This not only increases a but also decreases b
⇒ It is optimal to open chain links from the shortest chains first



J: Jinxed Jewelry
Problem Author: Michael Zündorf

Problem
Given chains of various lengths, how many chain links do you need to open, interlock with other
chain links and close again, to form a cyclic chain

Solution

• You need to open a chain links such that you end up with b ≤ a chains remaining
• If b > a You need to open more chain links
• If you open chain links from the shortest chain you have the chance to completely use up a chain
• This not only increases a but also decreases b

⇒ It is optimal to open chain links from the shortest chains first



J: Jinxed Jewelry
Problem Author: Michael Zündorf

Problem
Given chains of various lengths, how many chain links do you need to open, interlock with other
chain links and close again, to form a cyclic chain

Solution

• You need to open a chain links such that you end up with b ≤ a chains remaining
• If b > a You need to open more chain links
• If you open chain links from the shortest chain you have the chance to completely use up a chain
• This not only increases a but also decreases b
⇒ It is optimal to open chain links from the shortest chains first



D: Discus Domination
Problem Author: Florian Kothmeier

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18 correct
wrong-answer
timelimit
run-error
pending



D: Discus Domination
Problem Author: Florian Kothmeier

Problem
Given an integers a1, . . . , an, maximise aj − ai , where 0 ≤ j − i ≤ m (1 ≤ n, m ≤ 109)

Solution

• Naive solution: Try each starting point and search for the highest value in range.
⇒ O(n · m) ⇒ too slow!

• Idea: maximum value for a point aj (discus landing point) is given by the smallest starting
position ai in the last m values.

• Can be queried in O(log m) using a min-heap.
• C++: use std::multiset or std::map
• Java: use java.util.TreeMap
• Python: from queue import PriorityQueue

• For j = 1 → n:
• insert aj into the (multi) set.
• query ai = min(set).
• delete aj−m from the set.

⇒ O(n · log m)



D: Discus Domination
Problem Author: Florian Kothmeier

Problem
Given an integers a1, . . . , an, maximise aj − ai , where 0 ≤ j − i ≤ m (1 ≤ n, m ≤ 109)

Solution

• Naive solution: Try each starting point and search for the highest value in range.

⇒ O(n · m) ⇒ too slow!
• Idea: maximum value for a point aj (discus landing point) is given by the smallest starting

position ai in the last m values.
• Can be queried in O(log m) using a min-heap.

• C++: use std::multiset or std::map
• Java: use java.util.TreeMap
• Python: from queue import PriorityQueue

• For j = 1 → n:
• insert aj into the (multi) set.
• query ai = min(set).
• delete aj−m from the set.

⇒ O(n · log m)



D: Discus Domination
Problem Author: Florian Kothmeier

Problem
Given an integers a1, . . . , an, maximise aj − ai , where 0 ≤ j − i ≤ m (1 ≤ n, m ≤ 109)

Solution

• Naive solution: Try each starting point and search for the highest value in range.
⇒ O(n · m) ⇒ too slow!

• Idea: maximum value for a point aj (discus landing point) is given by the smallest starting
position ai in the last m values.

• Can be queried in O(log m) using a min-heap.
• C++: use std::multiset or std::map
• Java: use java.util.TreeMap
• Python: from queue import PriorityQueue

• For j = 1 → n:
• insert aj into the (multi) set.
• query ai = min(set).
• delete aj−m from the set.

⇒ O(n · log m)



D: Discus Domination
Problem Author: Florian Kothmeier

Problem
Given an integers a1, . . . , an, maximise aj − ai , where 0 ≤ j − i ≤ m (1 ≤ n, m ≤ 109)

Solution

• Naive solution: Try each starting point and search for the highest value in range.
⇒ O(n · m) ⇒ too slow!

• Idea: maximum value for a point aj (discus landing point) is given by the smallest starting
position ai in the last m values.

• Can be queried in O(log m) using a min-heap.
• C++: use std::multiset or std::map
• Java: use java.util.TreeMap
• Python: from queue import PriorityQueue

• For j = 1 → n:
• insert aj into the (multi) set.
• query ai = min(set).
• delete aj−m from the set.

⇒ O(n · log m)



D: Discus Domination
Problem Author: Florian Kothmeier

Problem
Given an integers a1, . . . , an, maximise aj − ai , where 0 ≤ j − i ≤ m (1 ≤ n, m ≤ 109)

Solution

• Naive solution: Try each starting point and search for the highest value in range.
⇒ O(n · m) ⇒ too slow!

• Idea: maximum value for a point aj (discus landing point) is given by the smallest starting
position ai in the last m values.

• Can be queried in O(log m) using a min-heap.
• C++: use std::multiset or std::map
• Java: use java.util.TreeMap
• Python: from queue import PriorityQueue

• For j = 1 → n:
• insert aj into the (multi) set.
• query ai = min(set).
• delete aj−m from the set.

⇒ O(n · log m)



D: Discus Domination
Problem Author: Florian Kothmeier

Problem
Given an integers a1, . . . , an, maximise aj − ai , where 0 ≤ j − i ≤ m (1 ≤ n, m ≤ 109)

Solution

• Naive solution: Try each starting point and search for the highest value in range.
⇒ O(n · m) ⇒ too slow!

• Idea: maximum value for a point aj (discus landing point) is given by the smallest starting
position ai in the last m values.

• Can be queried in O(log m) using a min-heap.
• C++: use std::multiset or std::map
• Java: use java.util.TreeMap
• Python: from queue import PriorityQueue

• For j = 1 → n:
• insert aj into the (multi) set.
• query ai = min(set).
• delete aj−m from the set.

⇒ O(n · log m)



D: Discus Domination
Problem Author: Florian Kothmeier

Possible Pitfall

• Be careful of duplicate elements, e.g. use std::multiset instead of std::set.
⇒ If not available (e.g. in Java), use a map (e.g. TreeMap) and count their occurrences. Delete

entries only when they appear 0-times in the map.

Alternative Solution

• Use a Deque for O(1) insertion and deletion from both ends.
• Add the current value and position (aj , j) at the end and remove the preceding entry while its

value is higher. ⇒ Smallest element will always be the first
• Remove elements from the front when their position is less than j − m
• Each element will be added once (and deleted once) from the list ⇒ O(n)



D: Discus Domination
Problem Author: Florian Kothmeier

Possible Pitfall

• Be careful of duplicate elements, e.g. use std::multiset instead of std::set.
⇒ If not available (e.g. in Java), use a map (e.g. TreeMap) and count their occurrences. Delete

entries only when they appear 0-times in the map.

Alternative Solution

• Use a Deque for O(1) insertion and deletion from both ends.

• Add the current value and position (aj , j) at the end and remove the preceding entry while its
value is higher. ⇒ Smallest element will always be the first

• Remove elements from the front when their position is less than j − m
• Each element will be added once (and deleted once) from the list ⇒ O(n)



D: Discus Domination
Problem Author: Florian Kothmeier

Possible Pitfall

• Be careful of duplicate elements, e.g. use std::multiset instead of std::set.
⇒ If not available (e.g. in Java), use a map (e.g. TreeMap) and count their occurrences. Delete

entries only when they appear 0-times in the map.

Alternative Solution

• Use a Deque for O(1) insertion and deletion from both ends.
• Add the current value and position (aj , j) at the end and remove the preceding entry while its

value is higher. ⇒ Smallest element will always be the first

• Remove elements from the front when their position is less than j − m
• Each element will be added once (and deleted once) from the list ⇒ O(n)



D: Discus Domination
Problem Author: Florian Kothmeier

Possible Pitfall

• Be careful of duplicate elements, e.g. use std::multiset instead of std::set.
⇒ If not available (e.g. in Java), use a map (e.g. TreeMap) and count their occurrences. Delete

entries only when they appear 0-times in the map.

Alternative Solution

• Use a Deque for O(1) insertion and deletion from both ends.
• Add the current value and position (aj , j) at the end and remove the preceding entry while its

value is higher. ⇒ Smallest element will always be the first
• Remove elements from the front when their position is less than j − m

• Each element will be added once (and deleted once) from the list ⇒ O(n)



D: Discus Domination
Problem Author: Florian Kothmeier

Possible Pitfall

• Be careful of duplicate elements, e.g. use std::multiset instead of std::set.
⇒ If not available (e.g. in Java), use a map (e.g. TreeMap) and count their occurrences. Delete

entries only when they appear 0-times in the map.

Alternative Solution

• Use a Deque for O(1) insertion and deletion from both ends.
• Add the current value and position (aj , j) at the end and remove the preceding entry while its

value is higher. ⇒ Smallest element will always be the first
• Remove elements from the front when their position is less than j − m
• Each element will be added once (and deleted once) from the list ⇒ O(n)



E: Elegant Exterior
Problem Author: Marcel Wienöbst

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
correct

wrong-answer
timelimit
run-error
pending



E: Elegant Exterior
Problem Author: Marcel Wienöbst

Problem
Compute the maximum area of a Haus vom Nikolaus with total line length n.

Solution

• Ternary search over w/h to find the optimal ratio of width and height. For a fixed ratio, one can
compute w and h and thus the maximum area by binary search.

• This is fast enough. However, there is a simpler solution.
• There is an optimal ratio of w and h independent of n (around 1.2221, but that’s not even

necessary to know). Thus, the maximal area scales with n2 and the answer is simply
0.0185303 · n2, where 0.0185303 is the solution to Sample Input 1.



E: Elegant Exterior
Problem Author: Marcel Wienöbst

Problem
Compute the maximum area of a Haus vom Nikolaus with total line length n.

Solution

• Ternary search over w/h to find the optimal ratio of width and height. For a fixed ratio, one can
compute w and h and thus the maximum area by binary search.

• This is fast enough. However, there is a simpler solution.
• There is an optimal ratio of w and h independent of n (around 1.2221, but that’s not even

necessary to know). Thus, the maximal area scales with n2 and the answer is simply
0.0185303 · n2, where 0.0185303 is the solution to Sample Input 1.



E: Elegant Exterior
Problem Author: Marcel Wienöbst

Problem
Compute the maximum area of a Haus vom Nikolaus with total line length n.

Solution

• Ternary search over w/h to find the optimal ratio of width and height. For a fixed ratio, one can
compute w and h and thus the maximum area by binary search.

• This is fast enough. However, there is a simpler solution.

• There is an optimal ratio of w and h independent of n (around 1.2221, but that’s not even
necessary to know). Thus, the maximal area scales with n2 and the answer is simply
0.0185303 · n2, where 0.0185303 is the solution to Sample Input 1.



E: Elegant Exterior
Problem Author: Marcel Wienöbst

Problem
Compute the maximum area of a Haus vom Nikolaus with total line length n.

Solution

• Ternary search over w/h to find the optimal ratio of width and height. For a fixed ratio, one can
compute w and h and thus the maximum area by binary search.

• This is fast enough. However, there is a simpler solution.
• There is an optimal ratio of w and h independent of n (around 1.2221, but that’s not even

necessary to know). Thus, the maximal area scales with n2 and the answer is simply
0.0185303 · n2, where 0.0185303 is the solution to Sample Input 1.



G: Gorgeous Garment
Problem Author: Wendy Yi

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
correct

wrong-answer
timelimit
run-error
pending



G: Gorgeous Garment
Problem Author: Wendy Yi

Problem
You are given
• the number of stitches of each round (which are increasing)
• and the amount and order of the colours.

How many rounds can you crochet such that each colour stripe is at least as wide as the last?

Solution

• If you can crochet i rounds of the pattern, you can crochet fewer rounds as well.
• Use binary search to determine the maximum number of rounds.
• Test if it is possible to crochet i rounds:

• Colour stripes are wider towards the outer edge
=⇒ use outermost colour for as many rounds as possible.

• Working from the outermost to the innermost round, greedily crochet as many rounds as possible
with each colour.

Running time: O(n log(n))



G: Gorgeous Garment
Problem Author: Wendy Yi

Problem
You are given
• the number of stitches of each round (which are increasing)
• and the amount and order of the colours.

How many rounds can you crochet such that each colour stripe is at least as wide as the last?

Solution

• If you can crochet i rounds of the pattern, you can crochet fewer rounds as well.
• Use binary search to determine the maximum number of rounds.

• Test if it is possible to crochet i rounds:
• Colour stripes are wider towards the outer edge

=⇒ use outermost colour for as many rounds as possible.
• Working from the outermost to the innermost round, greedily crochet as many rounds as possible

with each colour.

Running time: O(n log(n))



G: Gorgeous Garment
Problem Author: Wendy Yi

Problem
You are given
• the number of stitches of each round (which are increasing)
• and the amount and order of the colours.

How many rounds can you crochet such that each colour stripe is at least as wide as the last?

Solution

• If you can crochet i rounds of the pattern, you can crochet fewer rounds as well.
• Use binary search to determine the maximum number of rounds.
• Test if it is possible to crochet i rounds:

• Colour stripes are wider towards the outer edge
=⇒ use outermost colour for as many rounds as possible.

• Working from the outermost to the innermost round, greedily crochet as many rounds as possible
with each colour.

Running time: O(n log(n))



G: Gorgeous Garment
Problem Author: Wendy Yi

Problem
You are given
• the number of stitches of each round (which are increasing)
• and the amount and order of the colours.

How many rounds can you crochet such that each colour stripe is at least as wide as the last?

Solution

• If you can crochet i rounds of the pattern, you can crochet fewer rounds as well.
• Use binary search to determine the maximum number of rounds.
• Test if it is possible to crochet i rounds:

• Colour stripes are wider towards the outer edge
=⇒ use outermost colour for as many rounds as possible.

• Working from the outermost to the innermost round, greedily crochet as many rounds as possible
with each colour.

Running time: O(n log(n))



G: Gorgeous Garment
Problem Author: Wendy Yi

Problem
You are given
• the number of stitches of each round (which are increasing)
• and the amount and order of the colours.

How many rounds can you crochet such that each colour stripe is at least as wide as the last?

Solution

• If you can crochet i rounds of the pattern, you can crochet fewer rounds as well.
• Use binary search to determine the maximum number of rounds.
• Test if it is possible to crochet i rounds:

• Colour stripes are wider towards the outer edge
=⇒ use outermost colour for as many rounds as possible.

• Working from the outermost to the innermost round, greedily crochet as many rounds as possible
with each colour.

Running time: O(n log(n))



L: Legendary Lanparty
Problem Author: Michael Zündorf

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
correct

wrong-answer
timelimit
run-error
pending



L: Legendary Lanparty
Problem Author: Michael Zündorf

Problem
Given n tuples (ci , mi), reorder them such that the following sum is minimized

n∑
i=1

ci ·
i−1∑
j=1

mj .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 · 4 = 4

2 · 10 = 20

10 · 3 = 30

13 · 5 = 65

20 · 2 = 40



L: Legendary Lanparty
Problem Author: Michael Zündorf

Solution

• Observe that swapping two adjacent tuples changes the cost by

δ = ci · mi+1 − ci+1 · mi

⇒ δ must be positive for all adjacent tuples

• This already implies a total order
⇒ We can sort by δ, and compare non adjacent elements with it



L: Legendary Lanparty
Problem Author: Michael Zündorf

Solution

• Observe that swapping two adjacent tuples changes the cost by

δ = ci · mi+1 − ci+1 · mi

⇒ δ must be positive for all adjacent tuples
• This already implies a total order
⇒ We can sort by δ, and compare non adjacent elements with it



A: Alien Attack
Problem Author: Christopher Weyand

0 50 100 150 200 250 300
0

2

4

6

8

correct
wrong-answer
timelimit
run-error
pending



A: Alien Attack
Problem Author: Christopher Weyand

Problem
Given an undirected, connected graph. Each time step the following happens:

• the vertex of highest degree (id as tiebreaker) is deleted. Vertex 1 is never deleted.
• any vertex that cannot reach vertex 1 is deleted.

How many steps until only vertex 1 remains?

Solution

• consider an alternative process that deletes the highest degree node each step (nothing else)
• deletions in the connected component (CC) of vertex 1 remain as in the original process
• and deletions outside this CC are irrelevant to the original process anyway
• the answer is thus the number of nodes that can reach vertex 1 at the time of their deletion
• deletion order can be computed by maintaining degrees with a priority queue in O(m log n)
• by simulating the process in reverse (deletions become insertions) reachability checks can be done

with a union-find data structure



A: Alien Attack
Problem Author: Christopher Weyand

Problem
Given an undirected, connected graph. Each time step the following happens:

• the vertex of highest degree (id as tiebreaker) is deleted. Vertex 1 is never deleted.
• any vertex that cannot reach vertex 1 is deleted.

How many steps until only vertex 1 remains?

Solution

• consider an alternative process that deletes the highest degree node each step (nothing else)

• deletions in the connected component (CC) of vertex 1 remain as in the original process
• and deletions outside this CC are irrelevant to the original process anyway
• the answer is thus the number of nodes that can reach vertex 1 at the time of their deletion
• deletion order can be computed by maintaining degrees with a priority queue in O(m log n)
• by simulating the process in reverse (deletions become insertions) reachability checks can be done

with a union-find data structure



A: Alien Attack
Problem Author: Christopher Weyand

Problem
Given an undirected, connected graph. Each time step the following happens:

• the vertex of highest degree (id as tiebreaker) is deleted. Vertex 1 is never deleted.
• any vertex that cannot reach vertex 1 is deleted.

How many steps until only vertex 1 remains?

Solution

• consider an alternative process that deletes the highest degree node each step (nothing else)
• deletions in the connected component (CC) of vertex 1 remain as in the original process

• and deletions outside this CC are irrelevant to the original process anyway
• the answer is thus the number of nodes that can reach vertex 1 at the time of their deletion
• deletion order can be computed by maintaining degrees with a priority queue in O(m log n)
• by simulating the process in reverse (deletions become insertions) reachability checks can be done

with a union-find data structure



A: Alien Attack
Problem Author: Christopher Weyand

Problem
Given an undirected, connected graph. Each time step the following happens:

• the vertex of highest degree (id as tiebreaker) is deleted. Vertex 1 is never deleted.
• any vertex that cannot reach vertex 1 is deleted.

How many steps until only vertex 1 remains?

Solution

• consider an alternative process that deletes the highest degree node each step (nothing else)
• deletions in the connected component (CC) of vertex 1 remain as in the original process
• and deletions outside this CC are irrelevant to the original process anyway

• the answer is thus the number of nodes that can reach vertex 1 at the time of their deletion
• deletion order can be computed by maintaining degrees with a priority queue in O(m log n)
• by simulating the process in reverse (deletions become insertions) reachability checks can be done

with a union-find data structure



A: Alien Attack
Problem Author: Christopher Weyand

Problem
Given an undirected, connected graph. Each time step the following happens:

• the vertex of highest degree (id as tiebreaker) is deleted. Vertex 1 is never deleted.
• any vertex that cannot reach vertex 1 is deleted.

How many steps until only vertex 1 remains?

Solution

• consider an alternative process that deletes the highest degree node each step (nothing else)
• deletions in the connected component (CC) of vertex 1 remain as in the original process
• and deletions outside this CC are irrelevant to the original process anyway
• the answer is thus the number of nodes that can reach vertex 1 at the time of their deletion

• deletion order can be computed by maintaining degrees with a priority queue in O(m log n)
• by simulating the process in reverse (deletions become insertions) reachability checks can be done

with a union-find data structure



A: Alien Attack
Problem Author: Christopher Weyand

Problem
Given an undirected, connected graph. Each time step the following happens:

• the vertex of highest degree (id as tiebreaker) is deleted. Vertex 1 is never deleted.
• any vertex that cannot reach vertex 1 is deleted.

How many steps until only vertex 1 remains?

Solution

• consider an alternative process that deletes the highest degree node each step (nothing else)
• deletions in the connected component (CC) of vertex 1 remain as in the original process
• and deletions outside this CC are irrelevant to the original process anyway
• the answer is thus the number of nodes that can reach vertex 1 at the time of their deletion
• deletion order can be computed by maintaining degrees with a priority queue in O(m log n)

• by simulating the process in reverse (deletions become insertions) reachability checks can be done
with a union-find data structure



A: Alien Attack
Problem Author: Christopher Weyand

Problem
Given an undirected, connected graph. Each time step the following happens:

• the vertex of highest degree (id as tiebreaker) is deleted. Vertex 1 is never deleted.
• any vertex that cannot reach vertex 1 is deleted.

How many steps until only vertex 1 remains?

Solution

• consider an alternative process that deletes the highest degree node each step (nothing else)
• deletions in the connected component (CC) of vertex 1 remain as in the original process
• and deletions outside this CC are irrelevant to the original process anyway
• the answer is thus the number of nodes that can reach vertex 1 at the time of their deletion
• deletion order can be computed by maintaining degrees with a priority queue in O(m log n)
• by simulating the process in reverse (deletions become insertions) reachability checks can be done

with a union-find data structure



M: Massive Mountains
Problem Author: The Winter Contest Jury, Julian Baldus

0 50 100 150 200 250 300
0

2

4

6

8

10
correct

wrong-answer
timelimit
run-error
pending



M: Massive Mountains
Problem Author: The Winter Contest Jury, Julian Baldus

Problem
Given a weighted, directed graph with red and blue edges. A and B want to get from vertex 1 to
vertex n. They are not allowed to use an edge of the same colour at the same time. How long does it
take them at least to get to vertex n.

1 2 3
3

1

1
1 2 3

3

4

1
1 2 3

1

Solution

• Assume A starts with a red edge and B with a blue one.
• When A and B swap colours they both have to be on a vertex.
• Between swapping colours A and B walk through the subgraph with red/blue edges.
• We may assume that they use only shortest paths. (They are allowed to wait.)
• Step 1: Compute all shortest paths in the subgraph with red/blue edges. (Floyd Warshall)



M: Massive Mountains
Problem Author: The Winter Contest Jury, Julian Baldus

Problem
Given a weighted, directed graph with red and blue edges. A and B want to get from vertex 1 to
vertex n. They are not allowed to use an edge of the same colour at the same time. How long does it
take them at least to get to vertex n.

1 2 3
3

1

1
1 2 3

3

4

1
1 2 3

1

Solution

• Assume A starts with a red edge and B with a blue one.
• When A and B swap colours they both have to be on a vertex.
• Between swapping colours A and B walk through the subgraph with red/blue edges.
• We may assume that they use only shortest paths. (They are allowed to wait.)
• Step 1: Compute all shortest paths in the subgraph with red/blue edges. (Floyd Warshall)



M: Massive Mountains
Problem Author: The Winter Contest Jury, Julian Baldus

1 2 3
3

1

1
1 2 3

3

4

1

1 2 3
1

1.1

2.1

3.1

1.2

2.2

3.2

1.3

2.3

3.3

Solution (continued)

• Step 2: Consider the product graph where every vertex is a tuple (b,r) corresponding to the
position in the orginal graph of the person using red/blue edges.

• Add edges:
• If there are paths (r , r ′) and (b, b′) in G, add an arc ((r , b), (r ′, b′)) with cost

max(cost(r , r ′), cost(b, b′)).
• A and B may swap colours. Add a bidirectional arc ((r , b), (b, r)) with cost 0.

• Find a shortest path from (1, 1) to (n, n) in G ′ (e.g. with Dijkstra).



M: Massive Mountains
Problem Author: The Winter Contest Jury, Julian Baldus

1 2 3
3

1

1
1 2 3

3

4

1

1 2 3
1

1.1

2.1

3.1

1.2

2.2

3.2

1.3

2.3

3.3

3

4

1

3

4

1

3

4

1

1

1

1

1

1

3

Solution (continued)

• Step 2: Consider the product graph where every vertex is a tuple (b,r) corresponding to the
position in the orginal graph of the person using red/blue edges.

• Add edges:
• If there are paths (r , r ′) and (b, b′) in G, add an arc ((r , b), (r ′, b′)) with cost

max(cost(r , r ′), cost(b, b′)).

• A and B may swap colours. Add a bidirectional arc ((r , b), (b, r)) with cost 0.

• Find a shortest path from (1, 1) to (n, n) in G ′ (e.g. with Dijkstra).



M: Massive Mountains
Problem Author: The Winter Contest Jury, Julian Baldus

1 2 3
3

1

1
1 2 3

3

4

1

1 2 3
1

1.1

2.1

3.1

1.2

2.2

3.2

1.3

2.3

3.3

3

4

1

3

4

1

3

4

1

1

1

1

1

1

3

Solution (continued)

• Step 2: Consider the product graph where every vertex is a tuple (b,r) corresponding to the
position in the orginal graph of the person using red/blue edges.

• Add edges:
• If there are paths (r , r ′) and (b, b′) in G, add an arc ((r , b), (r ′, b′)) with cost

max(cost(r , r ′), cost(b, b′)).
• A and B may swap colours. Add a bidirectional arc ((r , b), (b, r)) with cost 0.

• Find a shortest path from (1, 1) to (n, n) in G ′ (e.g. with Dijkstra).



K: K.O. Kids II
Problem Author: Marcel Wienöbst

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
correct

wrong-answer
timelimit
run-error
pending



K: K.O. Kids II
Problem Author: Marcel Wienöbst

Problem
Given probabilities a1, . . . , ak of overcoming an unbeaten obstacle (already beaten obstacles are
overcome every time) and a queue of n participants, calculate the maximum probability to be the
first finisher.

Solution

• Main Idea: For participant i , compute the probability of making it up to obstacle j and failing
there:

P(i , j) =
∑
k≤j

P(i − 1, k) ·
∏

k≤l<j

al · (1 − aj).

In words, multiply the probability for each possible position of the previous participant by the
probability to make it from there exactly to obstacle j and not further.

• Evaluating this naively takes time O(nk2), which is too slow.
• Instead, dynamically build up the term T (i , j) =

∑
k≤j P(i − 1, k) ·

∏
k≤l<j al . It holds that

T (i , j) = (T (i , j − 1) + P(i − 1, j)) · aj and clearly P(i , j) = T (i , j − 1) · (1 − aj).
• This can be implemented in O(nk) time.



K: K.O. Kids II
Problem Author: Marcel Wienöbst

Problem
Given probabilities a1, . . . , ak of overcoming an unbeaten obstacle (already beaten obstacles are
overcome every time) and a queue of n participants, calculate the maximum probability to be the
first finisher.

Solution

• Main Idea: For participant i , compute the probability of making it up to obstacle j and failing
there:

P(i , j) =
∑
k≤j

P(i − 1, k) ·
∏

k≤l<j

al · (1 − aj).

In words, multiply the probability for each possible position of the previous participant by the
probability to make it from there exactly to obstacle j and not further.

• Evaluating this naively takes time O(nk2), which is too slow.
• Instead, dynamically build up the term T (i , j) =

∑
k≤j P(i − 1, k) ·

∏
k≤l<j al . It holds that

T (i , j) = (T (i , j − 1) + P(i − 1, j)) · aj and clearly P(i , j) = T (i , j − 1) · (1 − aj).
• This can be implemented in O(nk) time.



K: K.O. Kids II
Problem Author: Marcel Wienöbst

Problem
Given probabilities a1, . . . , ak of overcoming an unbeaten obstacle (already beaten obstacles are
overcome every time) and a queue of n participants, calculate the maximum probability to be the
first finisher.

Solution

• Main Idea: For participant i , compute the probability of making it up to obstacle j and failing
there:

P(i , j) =
∑
k≤j

P(i − 1, k) ·
∏

k≤l<j

al · (1 − aj).

In words, multiply the probability for each possible position of the previous participant by the
probability to make it from there exactly to obstacle j and not further.

• Evaluating this naively takes time O(nk2), which is too slow.

• Instead, dynamically build up the term T (i , j) =
∑

k≤j P(i − 1, k) ·
∏

k≤l<j al . It holds that
T (i , j) = (T (i , j − 1) + P(i − 1, j)) · aj and clearly P(i , j) = T (i , j − 1) · (1 − aj).

• This can be implemented in O(nk) time.



K: K.O. Kids II
Problem Author: Marcel Wienöbst

Problem
Given probabilities a1, . . . , ak of overcoming an unbeaten obstacle (already beaten obstacles are
overcome every time) and a queue of n participants, calculate the maximum probability to be the
first finisher.

Solution

• Main Idea: For participant i , compute the probability of making it up to obstacle j and failing
there:

P(i , j) =
∑
k≤j

P(i − 1, k) ·
∏

k≤l<j

al · (1 − aj).

In words, multiply the probability for each possible position of the previous participant by the
probability to make it from there exactly to obstacle j and not further.

• Evaluating this naively takes time O(nk2), which is too slow.
• Instead, dynamically build up the term T (i , j) =

∑
k≤j P(i − 1, k) ·

∏
k≤l<j al . It holds that

T (i , j) = (T (i , j − 1) + P(i − 1, j)) · aj and clearly P(i , j) = T (i , j − 1) · (1 − aj).
• This can be implemented in O(nk) time.



H: Hungry Hunting
Problem Author: The Winter Contest Jury, Julian Baldus

0 50 100 150 200 250 300
0

1

2

3

4

5

6
correct

wrong-answer
timelimit
run-error
pending



H: Hungry Hunting
Problem Author: The Winter Contest Jury, Julian Baldus

Problem
Given n item types with values c1, . . . , cn. If we double ci , how many items do we have to take to
obtain a value of exactly w? Print the answer for every i .

Solution

• Without doubling this problem is the classic coin change problem: Let dpℓ(k, j) be the minimum
number of items that have total value j, given that only types 1, . . . , k are allowed

• For each i double the value ci and do the classic coin change DP ⇒ O(n2 · w) ⇒ Too slow!
• Insight: dpℓ(k, j) for k < i is independent of whether ci is doubled or not.
• The same property holds when the DP works from the other direction: Only types k, . . . , n are

allowed for dpr (k, j); ci is irrelevant for k > i .
• For each i , compute double(i , j) = min{double(i , j − 2ci), dpℓ(i − 1, j)}:

“number of items with total value j, given that only types 1, . . . , i are allowed and ci is doubled”
• For each i , find minj{double(i , j) + dpr (i + 1, w − j)}.

Total time complexity: O(n · w)



H: Hungry Hunting
Problem Author: The Winter Contest Jury, Julian Baldus

Problem
Given n item types with values c1, . . . , cn. If we double ci , how many items do we have to take to
obtain a value of exactly w? Print the answer for every i .

Solution

• Without doubling this problem is the classic coin change problem: Let dpℓ(k, j) be the minimum
number of items that have total value j, given that only types 1, . . . , k are allowed

• For each i double the value ci and do the classic coin change DP

⇒ O(n2 · w) ⇒ Too slow!
• Insight: dpℓ(k, j) for k < i is independent of whether ci is doubled or not.
• The same property holds when the DP works from the other direction: Only types k, . . . , n are

allowed for dpr (k, j); ci is irrelevant for k > i .
• For each i , compute double(i , j) = min{double(i , j − 2ci), dpℓ(i − 1, j)}:

“number of items with total value j, given that only types 1, . . . , i are allowed and ci is doubled”
• For each i , find minj{double(i , j) + dpr (i + 1, w − j)}.

Total time complexity: O(n · w)



H: Hungry Hunting
Problem Author: The Winter Contest Jury, Julian Baldus

Problem
Given n item types with values c1, . . . , cn. If we double ci , how many items do we have to take to
obtain a value of exactly w? Print the answer for every i .

Solution

• Without doubling this problem is the classic coin change problem: Let dpℓ(k, j) be the minimum
number of items that have total value j, given that only types 1, . . . , k are allowed

• For each i double the value ci and do the classic coin change DP ⇒ O(n2 · w) ⇒ Too slow!
• Insight: dpℓ(k, j) for k < i is independent of whether ci is doubled or not.
• The same property holds when the DP works from the other direction: Only types k, . . . , n are

allowed for dpr (k, j); ci is irrelevant for k > i .
• For each i , compute double(i , j) = min{double(i , j − 2ci), dpℓ(i − 1, j)}:

“number of items with total value j, given that only types 1, . . . , i are allowed and ci is doubled”
• For each i , find minj{double(i , j) + dpr (i + 1, w − j)}.

Total time complexity: O(n · w)



B: Broken Borders
Problem Author: Jannik Olbrich

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8
correct

wrong-answer
timelimit
run-error
pending



B: Broken Borders
Problem Author: Jannik Olbrich

Problem
Given a simple polygon and many polylines. Can the polylines can be aligned to the polygon such
that every line segment of the polygon is covered? Polylines can be used arbitrarily often.

Solution

• A polyline can be aligned to a part of the polygon iff
• the ith segment of the polyline and the ith segment of the polygon part have equal length
• the ith angle of the polyline and the ith angle of the polygon part are equal

• Transform the polygon and polylines into strings of integers by enumerating all segment lengths
and angles

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.



B: Broken Borders
Problem Author: Jannik Olbrich

Problem
Given a simple polygon and many polylines. Can the polylines can be aligned to the polygon such
that every line segment of the polygon is covered? Polylines can be used arbitrarily often.

Solution

• A polyline can be aligned to a part of the polygon iff
• the ith segment of the polyline and the ith segment of the polygon part have equal length
• the ith angle of the polyline and the ith angle of the polygon part are equal

• Transform the polygon and polylines into strings of integers by enumerating all segment lengths
and angles

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.



B: Broken Borders
Problem Author: Jannik Olbrich

Problem
Given a simple polygon and many polylines. Can the polylines can be aligned to the polygon such
that every line segment of the polygon is covered? Polylines can be used arbitrarily often.

Solution

• A polyline can be aligned to a part of the polygon iff
• the ith segment of the polyline and the ith segment of the polygon part have equal length
• the ith angle of the polyline and the ith angle of the polygon part are equal

• Transform the polygon and polylines into strings of integers by enumerating all segment lengths
and angles

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.



B: Broken Borders
Problem Author: Jannik Olbrich

Problem
Given a simple polygon and many polylines. Can the polylines can be aligned to the polygon such
that every line segment of the polygon is covered? Polylines can be used arbitrarily often.

Solution

• A polyline can be aligned to a part of the polygon iff
• the ith segment of the polyline and the ith segment of the polygon part have equal length
• the ith angle of the polyline and the ith angle of the polygon part are equal

• Transform the polygon and polylines into strings of integers by enumerating all segment lengths
and angles

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.



B: Broken Borders
Problem Author: Jannik Olbrich

Solution (cont.)

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.

• Find every match of every pattern using your favourite string matching algorithm

too slow! every pattern can have n matches
• Find matches using the suffix array: All matches of a pattern form an interval in the suffix array
• For each position in the suffix array determine the length of the longest pattern whose interval

contains this position
• Finally, use a sweep-line algorithm to mark all covered positions in the string

Alternative solution: Use Aho-Corasick (lazy or with a persistent array data structure) to find the
longest match at every position of the string, then proceed with the sweep-line as above

Possible pitfalls

• You need integer-save angle comparison, (long) double is not precise enough
• O(n log2 n) suffix array construction may be too slow
• O(n1.5) hashing solutions can be too slow



B: Broken Borders
Problem Author: Jannik Olbrich

Solution (cont.)

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.

• Find every match of every pattern using your favourite string matching algorithm
too slow! every pattern can have n matches

• Find matches using the suffix array: All matches of a pattern form an interval in the suffix array
• For each position in the suffix array determine the length of the longest pattern whose interval

contains this position
• Finally, use a sweep-line algorithm to mark all covered positions in the string

Alternative solution: Use Aho-Corasick (lazy or with a persistent array data structure) to find the
longest match at every position of the string, then proceed with the sweep-line as above

Possible pitfalls

• You need integer-save angle comparison, (long) double is not precise enough
• O(n log2 n) suffix array construction may be too slow
• O(n1.5) hashing solutions can be too slow



B: Broken Borders
Problem Author: Jannik Olbrich

Solution (cont.)

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.

• Find every match of every pattern using your favourite string matching algorithm
too slow! every pattern can have n matches

• Find matches using the suffix array: All matches of a pattern form an interval in the suffix array

• For each position in the suffix array determine the length of the longest pattern whose interval
contains this position

• Finally, use a sweep-line algorithm to mark all covered positions in the string
Alternative solution: Use Aho-Corasick (lazy or with a persistent array data structure) to find the
longest match at every position of the string, then proceed with the sweep-line as above

Possible pitfalls

• You need integer-save angle comparison, (long) double is not precise enough
• O(n log2 n) suffix array construction may be too slow
• O(n1.5) hashing solutions can be too slow



B: Broken Borders
Problem Author: Jannik Olbrich

Solution (cont.)

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.

• Find every match of every pattern using your favourite string matching algorithm
too slow! every pattern can have n matches

• Find matches using the suffix array: All matches of a pattern form an interval in the suffix array
• For each position in the suffix array determine the length of the longest pattern whose interval

contains this position

• Finally, use a sweep-line algorithm to mark all covered positions in the string
Alternative solution: Use Aho-Corasick (lazy or with a persistent array data structure) to find the
longest match at every position of the string, then proceed with the sweep-line as above

Possible pitfalls

• You need integer-save angle comparison, (long) double is not precise enough
• O(n log2 n) suffix array construction may be too slow
• O(n1.5) hashing solutions can be too slow



B: Broken Borders
Problem Author: Jannik Olbrich

Solution (cont.)

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.

• Find every match of every pattern using your favourite string matching algorithm
too slow! every pattern can have n matches

• Find matches using the suffix array: All matches of a pattern form an interval in the suffix array
• For each position in the suffix array determine the length of the longest pattern whose interval

contains this position
• Finally, use a sweep-line algorithm to mark all covered positions in the string

Alternative solution: Use Aho-Corasick (lazy or with a persistent array data structure) to find the
longest match at every position of the string, then proceed with the sweep-line as above

Possible pitfalls

• You need integer-save angle comparison, (long) double is not precise enough
• O(n log2 n) suffix array construction may be too slow
• O(n1.5) hashing solutions can be too slow



B: Broken Borders
Problem Author: Jannik Olbrich

Solution (cont.)

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.

• Find every match of every pattern using your favourite string matching algorithm
too slow! every pattern can have n matches

• Find matches using the suffix array: All matches of a pattern form an interval in the suffix array
• For each position in the suffix array determine the length of the longest pattern whose interval

contains this position
• Finally, use a sweep-line algorithm to mark all covered positions in the string

Alternative solution: Use Aho-Corasick (lazy or with a persistent array data structure) to find the
longest match at every position of the string, then proceed with the sweep-line as above

Possible pitfalls

• You need integer-save angle comparison, (long) double is not precise enough
• O(n log2 n) suffix array construction may be too slow
• O(n1.5) hashing solutions can be too slow



B: Broken Borders
Problem Author: Jannik Olbrich

Solution (cont.)

• We now have the following problem: Given a (circular) string and a set of patterns. Is every
length-id (i.e. line segment) in the string covered by some match of a pattern.

• Find every match of every pattern using your favourite string matching algorithm
too slow! every pattern can have n matches

• Find matches using the suffix array: All matches of a pattern form an interval in the suffix array
• For each position in the suffix array determine the length of the longest pattern whose interval

contains this position
• Finally, use a sweep-line algorithm to mark all covered positions in the string

Alternative solution: Use Aho-Corasick (lazy or with a persistent array data structure) to find the
longest match at every position of the string, then proceed with the sweep-line as above

Possible pitfalls

• You need integer-save angle comparison, (long) double is not precise enough
• O(n log2 n) suffix array construction may be too slow
• O(n1.5) hashing solutions can be too slow



F: Fragmented Floor
Problem Author: Jannik Olbrich

0 50 100 150 200 250 300
0

1

2

3

4

5
correct

wrong-answer
timelimit
run-error
pending



F: Fragmented Floor
Problem Author: Jannik Olbrich

Problem
Given a simple axis-aligned polygon. Find the minimum number of rectangles that cover it exactly.

Solution

• Any solution (i.e. list of rectangles) is characterised by the axis-parallel diagonals that split the
polygon into the rectangles. Call those dissection edges

• Number of rectangles is 1 + #dissection edges
• Each concave corner of the polygon must be met by (at least) one dissection edge
• A dissection edge meets at most two concave corners. Call edges incident to two corners critical
• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges



F: Fragmented Floor
Problem Author: Jannik Olbrich

Problem
Given a simple axis-aligned polygon. Find the minimum number of rectangles that cover it exactly.

Solution

• Any solution (i.e. list of rectangles) is characterised by the axis-parallel diagonals that split the
polygon into the rectangles. Call those dissection edges

• Number of rectangles is 1 + #dissection edges
• Each concave corner of the polygon must be met by (at least) one dissection edge
• A dissection edge meets at most two concave corners. Call edges incident to two corners critical
• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges



F: Fragmented Floor
Problem Author: Jannik Olbrich

Problem
Given a simple axis-aligned polygon. Find the minimum number of rectangles that cover it exactly.

Solution

• Any solution (i.e. list of rectangles) is characterised by the axis-parallel diagonals that split the
polygon into the rectangles. Call those dissection edges

• Number of rectangles is 1 + #dissection edges

• Each concave corner of the polygon must be met by (at least) one dissection edge
• A dissection edge meets at most two concave corners. Call edges incident to two corners critical
• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges



F: Fragmented Floor
Problem Author: Jannik Olbrich

Problem
Given a simple axis-aligned polygon. Find the minimum number of rectangles that cover it exactly.

Solution

• Any solution (i.e. list of rectangles) is characterised by the axis-parallel diagonals that split the
polygon into the rectangles. Call those dissection edges

• Number of rectangles is 1 + #dissection edges
• Each concave corner of the polygon must be met by (at least) one dissection edge

• A dissection edge meets at most two concave corners. Call edges incident to two corners critical
• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges



F: Fragmented Floor
Problem Author: Jannik Olbrich

Problem
Given a simple axis-aligned polygon. Find the minimum number of rectangles that cover it exactly.

Solution

• Any solution (i.e. list of rectangles) is characterised by the axis-parallel diagonals that split the
polygon into the rectangles. Call those dissection edges

• Number of rectangles is 1 + #dissection edges
• Each concave corner of the polygon must be met by (at least) one dissection edge
• A dissection edge meets at most two concave corners. Call edges incident to two corners critical
• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges



F: Fragmented Floor
Problem Author: Jannik Olbrich

Solution (cont.)

• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges
⇒ Maximise number of non-intersecting critical edges

• Build graph: nodes are critical edges; connect nodes iff edges intersect
⇒ Max. set of critical edges =̂ max. independent set

• Only horizontal and vertical edges intersect ⇒ Graph is bipartite
⇒ solve using bipartite matching (Kőnig’s theorem)

• (To complete the dissection, draw a chord from each remaining convex vertex; the direction does
not matter.)



F: Fragmented Floor
Problem Author: Jannik Olbrich

a
b c

a
b

c

Solution (cont.)

• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges
⇒ Maximise number of non-intersecting critical edges

• Build graph: nodes are critical edges; connect nodes iff edges intersect
⇒ Max. set of critical edges =̂ max. independent set

• Only horizontal and vertical edges intersect ⇒ Graph is bipartite
⇒ solve using bipartite matching (Kőnig’s theorem)

• (To complete the dissection, draw a chord from each remaining convex vertex; the direction does
not matter.)



F: Fragmented Floor
Problem Author: Jannik Olbrich

a
b c

a
b

c

Solution (cont.)

• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges
⇒ Maximise number of non-intersecting critical edges

• Build graph: nodes are critical edges; connect nodes iff edges intersect
⇒ Max. set of critical edges =̂ max. independent set

• Only horizontal and vertical edges intersect ⇒ Graph is bipartite
⇒ solve using bipartite matching (Kőnig’s theorem)

• (To complete the dissection, draw a chord from each remaining convex vertex; the direction does
not matter.)



F: Fragmented Floor
Problem Author: Jannik Olbrich

a

c
a

b
c

Solution (cont.)

• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges
⇒ Maximise number of non-intersecting critical edges

• Build graph: nodes are critical edges; connect nodes iff edges intersect
⇒ Max. set of critical edges =̂ max. independent set

• Only horizontal and vertical edges intersect ⇒ Graph is bipartite
⇒ solve using bipartite matching (Kőnig’s theorem)

• (To complete the dissection, draw a chord from each remaining convex vertex; the direction does
not matter.)



F: Fragmented Floor
Problem Author: Jannik Olbrich

a

c
a

b
c

Solution (cont.)

• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges
⇒ Maximise number of non-intersecting critical edges

• Build graph: nodes are critical edges; connect nodes iff edges intersect
⇒ Max. set of critical edges =̂ max. independent set

• Only horizontal and vertical edges intersect ⇒ Graph is bipartite
⇒ solve using bipartite matching (Kőnig’s theorem)

• (To complete the dissection, draw a chord from each remaining convex vertex; the direction does
not matter.)



F: Fragmented Floor
Problem Author: Jannik Olbrich

a

c
a

b
c

Solution (cont.)

• Number of rectangles is 1 + #concave corners − #used non-intersecting critical edges
⇒ Maximise number of non-intersecting critical edges

• Build graph: nodes are critical edges; connect nodes iff edges intersect
⇒ Max. set of critical edges =̂ max. independent set

• Only horizontal and vertical edges intersect ⇒ Graph is bipartite
⇒ solve using bipartite matching (Kőnig’s theorem)

• (To complete the dissection, draw a chord from each remaining convex vertex; the direction does
not matter.)



Random facts

Jury work

• 263 commits

• 369 secret test cases (≈ 28 per problem)
• 110 jury solutions
• The minimum number of lines the jury needed to solve all problems is

39 + 67 + 4 + 8 + 1 + 52 + 28 + 23 + 4 + 17 + 16 + 14 + 25 = 298

On average 23 lines per problem



Random facts

Jury work

• 263 commits
• 369 secret test cases (≈ 28 per problem)

• 110 jury solutions
• The minimum number of lines the jury needed to solve all problems is

39 + 67 + 4 + 8 + 1 + 52 + 28 + 23 + 4 + 17 + 16 + 14 + 25 = 298

On average 23 lines per problem



Random facts

Jury work

• 263 commits
• 369 secret test cases (≈ 28 per problem)
• 110 jury solutions

• The minimum number of lines the jury needed to solve all problems is

39 + 67 + 4 + 8 + 1 + 52 + 28 + 23 + 4 + 17 + 16 + 14 + 25 = 298

On average 23 lines per problem



Random facts

Jury work

• 263 commits
• 369 secret test cases (≈ 28 per problem)
• 110 jury solutions
• The minimum number of lines the jury needed to solve all problems is

39 + 67 + 4 + 8 + 1 + 52 + 28 + 23 + 4 + 17 + 16 + 14 + 25 = 298

On average 23 lines per problem


